
ISMB-ECCB 2019 HiTSeq Track Proceedings

Basel, Switzerland
July 22-23, 2019

http://www.hitseq.org

Organizers:

Can Alkan
Bilkent University, Bilkent, Ankara, Turkey
E-mail: calkan@gmail.com

Ana Conesa
University of Florida, Gainesville, Florida, USA
E-mail: vickycoce@gmail.com

Francisco M. De La Vega, D.Sc.
Stanford University, and TOMA Biosciences, USA.
E-mail: Francisco.DeLaVega@stanford.edu

Dirk Evers
Molecular Health GmbH, Heidelberg, Germany
E-mail: dirk.evers@gmail.com

Gang Fang
Mount Sinai School of Medicine, New York, NY, USA
E-mail: fanggang@gmail.com
Kjong Lehmann
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1 Background 
 
The simplicity and cost-e ectiveness of CRISPR (Clustered Regularly Interspaced Short Palindromic Re-peats) technology 

have made high-throughput pooled screening approaches accessible to virtually any lab. Analyzing the large sequencing 

data derived from these studies, however, still demands considerable bioinfor-matics expertise. Various methods have 

been developed to lessen this requirement, but there are still three tasks for accurate CRISPR screen analysis that involve 

bioinformatic know-how if not prowess: designing a proper statistical hypothesis test for robust target identi cation, 

developing an accurate mapping algorithm to quantify sgRNA levels, and minimizing the parameters necessary that need 

to be ne-tuned. 

 

2 Results 
 
We have developed a new algorithm, called CRISPRBetaBinomial or CB

2
 (https://CRAN.R-project. org/package=CB2). 

In CB
2
 , we adapted a beta-binomial model [Baggerly et al., 2003] with a modi ed Students t-test to measure di erences in 

single-guide RNA (sgRNA) levels, followed by Fishers combined probability test [Fisher, 1925] to estimate the gene-level 

signi cance. We compared CB
2
 with eight state-of-the-art methods (HiTSelect, MAGeCK, PBNPA, PinAPL-Py, RIGER, 

RSA, ScreenBEAM, and sgRSEA) on benchmark datasets [Evers et al., 2016, Sanson et al., 2018] evaluating gene 
essentiality using di erent technologies: CRISPRn (CRISPR nuclease gene knockout via Cas9) and CRISPRi 
(CRISPRinterference, a CRISPR/Cas9 system with a catalytically inactive Cas9 fused to the transcriptional repressor 
KRAB which results in gene repression). Based on the beta-binomial distribution, which is better suited to sgRNA data, 

CB
2
 outperformed all other methods at every FDR cut-o level, and all other methods lost their detection powers at more 

rigorous FDRs (Figure 1). In other words, all methods demonstrated a small type-I error due to the strong lethality 

phenotype of the CRISPR assay, but CB
2
 demonstrated a signi cantly lower type-II error than the other methods. Across 

all paradigms tested with di erent FDR cut-o s, CB
2
 performed the best, with a much larger F1-score and recall. CB

2
 also 

accommodates staggered sgRNA sequences, and it provides more accurate alignment then other alignment methods 
without parameter tuning using an adaptive hash-mapping algorithm. In conjunction with CRISPRcloud framework 

(http://crispr.nrihub. org), CB
2
 will bring CRISPR screen analysis within reach for a wider community of researchers. 

 

3 Conclusion 
 

The advent of CRISPR/Cas9 systems heralded a new era of large-scale screening approaches. Over the past three 
years, there has been tremendous growth in the number of pooled genetic screens. The number of datasets for 
CRISPR/Cas9 screens in Gene Expression Omnibus have more than tripled each year (39 datasets in 2015, 121 
datasets in 2016, and 408 datasets in 2017). Much of this has been due to the widespread availability of large-scale 
genome-wide perturbation libraries via the non-pro t repository Addgene (https: //www.addgene.org/) and resource 
sharing between labs. However, the computational burden of CRISPR pooled screen data analysis has not been so 

amenable to a cheap and a widely accessible solution. In this study, we provide a novel algorithm { CB
2
 { that 

provides a powerful and robust analysis of the data and does not require heavy computation for both hypothesis test 

and sgRNA abundance quanti cation. Moreover, to the best of our knowledge, CB
2
 outperforms other 

CRISPR/Cas9-screen analysis programs and will accelerate discovering novel biological ndings from CRISPR 
pooled screens with the cooperation of CRISPRcloud. 
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Figure 1: CB2 offers robust target identification with high precision and recall. Benchmark results using
data from [Evers et al., 2016] (A) Heatmaps illustrate FDRs of gene statistics from each of nine leading
high-complexity pooled screen analysis tools. (B) F1-score measurements at different FDR cut-offs across
all methods. At commonly used FDR cut-offs, CB2 can identify most of the essential genes with high rates
of precision and recall.
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Subpopulation detection and their comparative analysis across single cell 

experiments with PopCorn 
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One of the key applications of scRNA-seq technology concerns the 

identifica-tion of subpopulations of cells present in a sample, and comparing 

such subpopula-tions across multiple samples/experiments. This conceptually 

natural task, is com-plicated by technical and biological noise which can obscure 

the true biological similarities and differences between the samples. To address 

this need, we intro-duce a computational method, PopCorn (single cell sub-

Populations Comparison). Leveraging the information from all input data sets, 

PopCorn performs these two tasks simultaneously by optimizing a joint objective 

function. 
 

First, any pair of cells from two different experiments/samples are connected 

by an edge that measures their similarity. Next, if two cells are in the same 

exper-iment, a more complex relation called subpopulation co-membership 

propensity graph, is estimated. Informally, subpopulations should be defined in 

such a way that cells in the same subpopulation should all be similar to each 

other while si-multaneously distinguishing themselves from other cells. To strike 

the balance, PopCorn uses the idea of Googles personalized PageRank. For 

each individual, this method measures personal preferences (ranking) towards 

specific pages on the World Wide Web which are recorded in a personalised 

PageRank vector. Here, we substitute the network of web pages by a cell-to-cell 

expression similarity graph and for each cell we estimate its preference (a “vote”) 

of which other cells should be included in the same subpopulation with itself. 

This voting takes into account the above mentioned criterion that the expression 

pattern of cells within a subpop-ulation should be consistent but distinct from the 

expression of the cells outside the subpopulation. The resulting preferences of 

all cells are then combined to define the edge weights of the subpopulation co-

membership propensity graph. Thus, this graph takes into account not only the 

relation of each pair of cells to themselves but also their relation to the rest of the 

cells in the same experiment. 
 

Finally, both types of edges are combined into one graph which is then par-

titioned into connected subgraphs that define both: the subpopulations and their 

mapping across the experiments. 

We tested the performance of PopCorn in three distinct settings. First, we 

demonstrated its potential in identifying and aligning subpopulations from single 

cell data from human and mouse pancreatic single cell data (?). Next, we applied 

PopCorn to the task of aligning biological replicates of mouse kidney single cell 

data (?). PopCorn achieved the best performance over the previously published 

tools. Finally, we applied it to comparing populations of cells from cancer and 

healthy brain tissues reveling the relation of neoplastic cells to neural cells and 

astrocytes. 
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Figure 1: Comparison of performance of PopCorn, Seurat + Louvain, and MNN + Lou-
vain methods on human and mouse pancreatic cell data (A) Two t-SNE plots for human and
mouse scRNA-seq data sets, respectively. Colors indicate different cell annotations which
are determined from literature provided labels. Cells of identical color denote subpopula-
tions identified by PopCorn. (B) Sankey diagrams of the resulting mapping between iden-
tified subpopulations (left) to ground truth labels (right) for PopCorn, Seurat, and MNN.
The width of the flow bar is proportional to the purity score (see STAR methods). Incor-
rectly identified and mapped subpopulations are annotated by exclamation marks adjacent
to the ID number. (C) Comparison of PopCorn, Seurat, and MNN on several metrics (see
STAR methods for a detailed definition).
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Detection and assembly of novel sequence insertions using Linked-Reads

Dmitry Meleshko1,2, Patrick Marks3, Stephen Williams3, and Iman Hajirasouliha2,4,∗

∗
Corresponding author

Availability: Software is freely available at https://github.com/1dayac/novel_insertions
Contact: imh2003@med.cornell.edu

As a result of efforts in advancing DNA sequencing technologies and related algorithm developments, the field of personal
genomics has been revolutionized in the past decade. Leveraging next-generation sequencing technologies, whole genome
sequencing (WGS) has shown unprecedented promise in characterizing variants among human genomes. However, current
methods are still unable to assemble a large fraction of structural variants due to limitations of short-reads in resolving
repetitive regions of the genome effectively (Chaisson et al. (2015b); Huddleston and Eichler (2016)).

Long-read sequencing technologies have recently become commercially available. These techniques promise the ability
to call structural variants and improve de novo assembly (Chaisson et al. (2015a); Sedlazeck et al. (2017)). While these
technologies offer much longer reads than traditional short-read technologies, their base-pair error rates are higher than
Illumina short reads (10-15% vs. 0.3% error) (Koren et al. (2012)). Additionally, long-read technologies have still much
higher costs and often require high amount of DNA. This makes long-reads impractical for large-scale screenings of whole
genome samples.

Low-cost and high-accurate Linked-Read technologies have emerged recently to improve the ability of standard short-read
sequencing in determining whole genomes. In Linked-Read sequencing, DNA molecules are sheared into long fragments, and
barcoded short reads from these long fragments are produced in such a way that reads from a long fragment share the
same barcode. Most recently, Linked-Reads proved to be useful in multiple applications including but not limited to genome
assembly (Weisenfeld et al. (2017)), genome phasing (Zheng et al. (2016)), or large-scale somatic SV detection (Spies et al.

(2017)). The contribution of Linked-Reads to SV detection is, however, still limited to large structural variations. In
particular, virtually none of the available SV detection algorithms attempt to characterize mid-size novel insertions (as small
as only 300 bp and up to a few thousand bp in size).

In the past, several approaches attempted novel sequence insertion detection using standard short-read whole genome
sequencing data. All algorithms are based on the idea of assembling reads that are not aligned on the reference genome and
connecting these assembled sequences with potential insertion breakpoints on the reference genome. All these approaches
are, however, limited to conventional paired-end sequencing data and it turns out to be problematic to correctly locate
insertions in the repetitive regions of the genome, because the size of anchors is limited by the small fragment size. Our
main objective here is to develop a novel technique that can leverage barcodes and long fragment information encoded in
Linked-Read sequencing to achieve much longer anchors.

We introduce an integrated mapping-based and assembly-based method, which is significantly more accurate than existing
short-read methods for novel insertion discovery. While our method is less efficient in run-time that existing short-read
methods, it is indeed more efficient compared to the recent Linked-Read algorithms that use whole-genome de novo assembly
such as (Wong et al. (2018)) because it uses only a very small fraction of informative Linked-Reads. Our Linked-Read method
is able to characterize one of the most challenging classes of SVs with a reasonable additional cost to standard short-read
sequencing.

Figure 1: An overview of the steps in the Novel-

X method is shown.

Our method is based on a novel idea that the barcode information encoded
in Linked-Reads can be used to reconstruct long anchors that can be unam-
biguously placed on the reference genome. This allows finding exact break-point
positions on the reference even in repeat regions. Our approach is based on
the local assembly of multiple barcodes originated from the same genomic loci.
An overview of our technique is also shown in Figure 1.

The input for Novel-X is a reference genome and a BAM-file. We refer to
the set of the reads from the input BAM-file as original reads and to the BAM-
file itself as original BAM. A pre-processing step in Novel-X is the extraction of
paired-end reads from the original BAM that cannot be aligned to the reference
genomes or have poor alignments. Intuitively, novel insertion sequences should
consist of reads that do not align anywhere on the reference. We choose paired-
end reads in which at least one end is not aligned to the reference genome, or
has the mapping quality below 10, or has more than 20% of soft-clipped bases.
For simplicity, we collectively call this set of unaligned reads as U . Reads from
U correspond to novel sequence insertions and anchor sequences.

We first use the Velvet de novo assembler (Zerbino (2010)) to assemble
U . Ideally, the resulting assembly contigs would belong to sequences of novel insertions. If needed, we can perform a
contamination removal procedure similar to what was previously done in NovelSeq (Hajirasouliha et al. (2010)). i.e. perform

1
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a BLAST search against nt/nr database and filter out all contigs that align to non-human references. We call the remaining
contigs orphan contigs.

For each orphan contig c, we first align the reads from U to c and filter read alignments with low-quality scores or with
a large fraction (>20%) of soft-clipped or hard-clipped sequences. Let R(c) be the set of filtered barcoded-reads aligned to
c. We denote B(c) as the set of all barcodes in R(c). We extract and store every read from the set of original reads whose
barcode is in B(c). The information about barcodes of remaining reads is, however, extracted and aggregated separately for
each orphan contig.

In order to reconstruct anchors and automatically connect them to novel sequences, for each barcode list we search the
original BAM for reads that have a barcode from the barcode list and extract them. Then, we reassemble each set of extracted
reads separately. While we understand that different long fragments from different places can share identical barcodes, only
regions of our interest would receive enough sequence coverage and can be assembled into contiguous sequences.

The last step of the pipeline is the detection of the positions on the reference genome where the novel insertions took
place. We use Minimap2 for aligning the resulting assemblies to the reference genome. Alignments that are adjacent with
respect to the reference genome are analyzed for insertion signatures. We keep only insertions longer than 300 bp with at
least one anchor exceeding 300 bp to prevent false calls. All found insertion are stored in a vcf (Variant Call Format) file.

In order to evaluate the utility of Novel-X on real data, we performed experiments with a CHM1 dataset. The dataset is
available at
https://support.10xgenomics.com/de-novo-assembly/datasets/2.0.0/chm.

In summary, for the CHM1 dataset, Novel-X identified 314 insertions longer than 300 bp. To compare results for different
novel insertion callers we compared WGS novel sequence insertion callers with the calls obtained with SMRT-SV algorithm
(see Table 1). While Pamir finds more insertions than Novel-X and PopIns, it tends to call shorter insertions. Novel-X
finds more insertion of size greater than 500 bp compared to other callers. These findings are consistent with our theory
because longer insertion sequences recruit more barcodes than short ones and their assembly will more likely produce long
anchors. Another encouraging validation of our method is that about 80% of Novel-X calls overlap with SMRT-SV calls
while the amount of agreement with Pamir and PopIns is below 45%. Indeed Pamir and PopIns are more likely to produce
false positive calls.

Novel insertions detection results for insertions longer than 300 bp
Length (bp) SMRT-SV Novel-X Pamir (Kavak et al. (2017)) PopIns (Kehr et al. (2016))
300-499 1919 97 (78, 80%) 324 (121, 36%) 156 (25, 16%)
500-999 1144 139 (115, 83%) 76 (51, 67%) 151 (33, 22%)
1000-1999 598 56 (49, 88%) 5 (4, 80%) 89 (13, 15%)
≥2000 608 22 (12, 55%) 2 (2, 100%) 21 (6, 29%)
Total(≥300) 4269 314 (254, 81%) 407 (178, 44%) 417 (77, 18%)

Table 1: Length breakdown and comparison between SMRT-SV, Pamir and
PopIns, and Novel-X for CHM1. The numbers in brackets indicate
the count of overlaps with SMRT-SV calls and the percentage of the
overlapping calls.

Finally, we ran our method on the well-known CEPH/HapMap NA12878 diploid genome and compared it with a recently
de novo assembly based method Wong et al. (2018) and SMRT-SV calls (see Table 2). For the NA12878 sample, Novel-X
found 219 novel sequence insertions with mean length 778 bp and a total length of 170 kbp.

Novel insertions detection results for insertions longer than 300 bp
Length (bp) SMRT-SV Novel-X NUI
300-499 2661 73 (50, 68%) 9 (8, 89%)
500-999 1462 112 (83, 74%) 17 (16, 94%)
1000-1999 1072 28 (14, 50%) 2 (2, 100%)
≥2000 1228 6 (2, 33%) 3 (2, 67%)
Total(≥300) 6423 219 (149, 68%) 31 (28, 90%)

Table 2: Length breakdown and comparison between the PacBio based tool,
SMRT-SV, Linked-Read method NUI-pipeline and our Linked-Read
method Novel-X on NA12878. The numbers in brackets indicate the
count of overlaps with SMRT-SV calls.

Funding DM is supported by the Tri-Institutional Training Program in Computational Biology and Medicine (via NIH
training grant 1T32GM083937). This work was also supported by start-up funds (Weill Cornell Medicine) and a US National
Science Foundation (NSF) grant under award number IIS-1840275 to IH.
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Bspliced: a Bayesian hierarchical model for differential splicing 
accounting for sample-to-sample variability and mapping uncertainty 

Simone Tiberi and Mark D Robinson 

Institute of Molecular Life Sciences and SIB, University of Zurich 

Alternative splicing plays a fundamental role in the biodiversity of proteins as it allows a single 

gene to generate several transcripts and, hence, to code for multiple proteins. However, variations 

in splicing patterns can be involved in diseases. When investigating differential splicing (DS) 

between conditions, typically healthy vs disease, scientists are increasingly focusing on 

differential transcript usage (DTU), i.e. in changes in the proportion of transcripts. 

A big challenge in DTU analyses is that, unlike gene level studies, the counts at the transcript 

level, which are of primary interest, are not observed because most reads map to multiple 

transcripts. Tools such as salmon or kallisto allow, via expectation maximization (EM) 

algorithms, to estimate the expected number of fragments originating from each transcript. Most 

DTU methods (e.g., DRIMSeq, BayesDRIMSeq and SUPPA2) follow a plug-in approach and take 

the estimated counts as input by treating them as real transcript counts, thus neglecting the 

uncertainty in the estimates. In order to overcome this issue, some methods, such as cjBitSeq and 

casper, consider what transcripts each read is compatible with (also called equivalence class); 

nevertheless, none of these tools allows for sample-specific proportions (i.e., they assume all 

samples to share the same transcript relative abundance). 

To overcome the limitations of current methods for DTU, we present Bspliced, an R package* to 

perform DTU based on RNA-seq data. Bspliced uses a Bayesian hierarchical model, with a 

Dirichlet-multinomial structure, to explicitly model the variability between samples. Our tool 

inputs the equivalence class of each read, by treating the allocations of reads to the transcripts as 

latent variables. When a read is compatible with more than one gene, the gene allocation is also 

treated as a latent variable. The parameters of the model are inferred via Markov chain Monte 

Carlo (MCMC) techniques where, via a data augmentation procedure, we alternately sample the 

Dirichlet-multinomial parameters and the latent variables. 

To ensure that the MCMC posterior chains have converged, we assess the stationarity of the full 

log-posterior density via Heidelberg and Welch’s convergence diagnostic. Despite the 

computational complexity of full MCMC algorithms, the core of our method is coded in C++, 

which makes Bspliced highly efficient and feasible to run on a laptop, even for complex model 

organisms. 



In order to test for DTU, at both transcript and gene level, we approximate the posterior densities 

of the parameters by a multivariate normal distribution and apply a multivariate Wald test. Our 

method tests for DTU at both transcript and gene level, allowing scientists to investigate what 

specific transcripts are differentially used in selected genes. Furthermore, our tool is not limited to 

two group comparisons and also allows to test for DTU when samples belong to more than two 

groups. 

We will show how, both in simulation studies and experimental data analyses, the proposed 

methodology outperforms existing methods (e.g., see Figure 1). 

*We will submit Bspliced to Bioconductor in April 2019. 

Figure 1: True positive rate (TPR) vs. false discovery rate (FDR) computed for several methods for DTU in 

a 6 vs 6 RNA-seq simulation study from a human genome. For any given FDR threshold, Bspliced provides 

a significantly higher TPR than any other method considered. We obtained similar results in all simulation 

and experimental data analyses we performed.  
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Accurate determination of node and arc multiplicities in de Bruijn graphs
using conditional random fields

Aranka Steyaert, Pieter Audenaert, Jan Fostier

Background De Bruijn graphs are used in many bioinformatics tools, e.g. genome assembly, read correc-
tion and variant detection, because they efficiently represent the overlap between sequences. The nodes
correspond to k-mers of the sequences, while arcs represent k + 1-mers such that the first (resp. last) k nu-
cleotides coincide with those of the node that the arc points from (resp. points to) [1]. In the read-based de
Bruijn graph that results from a sequencing experiment, each node (resp. arc) has a coverage corresponding
to the number of times its k-mer (resp. k + 1-mer) is present in the read-set. This read-based graph is a
noisy representation of the (unknown) genomic sequence underlying the reads. We call the number of times
a k-mer (resp. k + 1-mer) is present in the genomic sequence the multiplicity of the corresponding node
(resp. arc). The multiplicity of a node/arc is reflected in its coverage, however, coverage variability and
coverage biases complicate the identification of the true multiplicities. To accurately infer the underlying
genome de Bruijn graph from a read-based graph, we want to label all nodes and arcs with a multiplicity:
for true nodes/arcs this multiplicity corresponds to their repeat copy-number, while erroneous nodes/arcs
should have multiplicity zero.
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Figure 1: Mixture of negative binomial distributions
fitted to a k-mer histogram. The distinct components
and derived multiplicity intervals are shown.

Current methodology to infer node and arc multiplicities
often uses a k-mer histogram approach. A k-mer his-
togram is obtained by counting at each k-mer coverage
present in the data, the number of k-mers that occurs
with that coverage. A mixture of distributions is fitted to
this histogram, such that each component corresponds to
a multiplicity (see Figure 1). To infer multiplicities, hard
intervals of coverage are selected based on the mixture
model. However, because the components that consti-
tute the mixture model overlap, inference based on a k-
mer histogram alone is error-prone. Nodes and arcs that
have a coverage near the interval boundaries can be as-
signed an erroneous multiplicity. This, in turn, leads to
erroneous conclusions in the applications that use a de
Bruijn graph, such as the deletion of low-coverage true
k-mers that results in a more fragmented assembly [2].

Erroneous multiplicity assignments can be identified by using a known property of genome de Bruijn graphs:
at each node in the graph, the multiplicity of that node has to equal the sum of the multiplicities of the
incoming arcs and the sum of the multiplicities of the outgoing arcs [3]. This property, which we call
‘conservation of flow of multiplicity’, also holds in the presence of sequencing errors when the spurious
nodes/arcs are assigned multiplicity zero.
We present a statistical model that incorporates coverage of individual nodes/arcs as well as the conservation
of flow property, to label the nodes/arcs of a de Bruijn graph with multiplicities. We believe that this
methodology can be a useful addition to the many bioinformatics tools that make use of de Bruijn graphs.

Results We build a conditional random field (CRF) model that incorporates both local evidence (coverage)
and evidence present in a neighbourhood surrounding a node or arc (conservation of flow), in a high-
dimensional statistical model. This model is used to assign the most likely multiplicity to nodes/arcs in a de
Bruijn graph. The model contains the following variables: the unknown multiplicities, Y = {Y1, . . . , YN},
which we need to infer, and the coverages of the arcs, X = {X1, . . . , XN}, which are observed. We model
the conditional distribution P (Y|X) as a product of factors ϕ such that P (Y|X) = 1

Z(X)
∏M

i=1 ϕi(Di),
(Di ⊆ X∪Y, Di * X) [4]. We use two types of factors. The first type, ϕ(Y, X), relates the coverage of a
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Figure 2: Small genome sequence with repeats with corresponding de Bruijn graph. The red nodes in the de Bruijn
graph correspond to sequencing errors. For a neighbourhood of size 1 around r4 the CRF is shown. Nodes Yn

correspond to nodes n in the de Bruijn graph and nodes Ya correspond to the arcs. Each CRF node Y is connected to
a CRF node X through a ϕ factor that represents the coverage information. All connections between Y -nodes arise
from conservation of flow factors, their corresponding cliques are shown for the ϕflow-factors of node Yr4 .

node/arc to its expected multiplicity based on a mixture model fitted to a k-mer histogram. A second type of
factor ϕflow(Yn, {Ya}a∈in(n)) / ϕflow(Yn, {Ya}a∈out(n)) implies a conservation of flow. Its arguments are the
multiplicity variable for a node n and multiplicity variables for all its incoming/outgoing arcs a. This factor
assigns a high value when the conservation of flow property holds and a low value otherwise. The conditional
random field model provides us with a graph representation of the probability distribution. Herein, nodes
represent variables and arcs connect variables such that a clique is formed whenever variables co-occur in a
factor. This graph representation allows us to rely on graph algorithms to perform inference more efficiently.
As exact inference methods are computationally intensive, we estimate the multiplicity labels for each node
and arc in the de Bruijn graph based on a CRF built for a selected neighbourhood around that node/arc. A
neighbourhood of size s around node n then contains all nodes reachable by a path of length ≤ s from n
and all their incoming and outgoing arcs (see Figure 2 for an example).

P. aeruginosa H. sapiens chr. 21

coverage accuracy iters accuracy iters

15× cut-off 87.77 25 62.20 25
CRF 96.16 8 67.36 18

30× cut-off 73.25 25 69.47 25
CRF 98.54 5 76.49 11

75× cut-off 98.02 15
CRF 99.19 4

Table 1: Accuracy and number of EM-iterations needed to label
nodes in a de Bruijn graph with a multiplicity using a k-mer
histogram cut-off or a CRF model. Datasets were downsampled
to different levels of coverage. H. sapiens chr. 21 has coverage
below 50×, hence, no results are shown for 75× coverage.

We use the CRF in an EM-setting and alternat-
ingly determine model parameter estimates and
multiplicity labels. Table 1 shows results for a
P. aeruginosa dataset (ERR330008) and a H.
sapiens chr. 21 dataset (Illumina data library).
For both datasets a well-characterised reference
sequence is available (ref. ID ERR330008, resp.
HG19) [5], which we used to determine the true
multiplicities in the de Bruijn graph. This allows
us to determine the accuracy as the proportion
correctly assigned labels to the nodes in a de
Bruijn graph. We notice a higher accuracy as
well as a need for fewer EM-iterations when us-
ing the CRF model.

Conclusions By using a CRF to incorporate contextual information in addition to the k-mer histogram for
single nodes, we consistently obtain better accuracy when labelling nodes in a de Bruijn graph with their
multiplicity. With more efficient inexact inference techniques we will be able to use larger neighbourhoods,
thus increasing the accuracy even further. This framework can be valuable in bioinformatics tools that rely
on a de Bruijn graph.
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Abstract: 

ATAC-seq has become a leading technology for probing the chromatin landscape of single and 

aggregated cells. Distilling functional regions from ATAC-seq and other similar genomic 

technologies presents diverse analysis challenges, due to the relative sparseness of the data 

produced and the interaction of complex noise with multiple chromatin structure scales. 

Methods commonly used to analyze chromatin accessibility datasets are adapted from 

algorithms designed to process different experimental technologies, disregarding the statistical 

and biological differences intrinsic to the ATAC-seq technology. Here, we present a Bayesian 

statistical approach that uses Hidden Semi-Markov models to better model the duration of 

functional and accessible regions, termed ChromA. We demonstrate the method on multiple 

genomic technologies, with a focus on ATAC-seq data. ChromA annotates the cellular epigenetic 

landscape by integrating information from replicates, producing a consensus de-noised 

annotation of chromatin accessibility. ChromA can analyze single cell ATAC-seq data, improving 

cell type identification and correcting many biases generated by the sparse sampling inherent in 

single cell technologies. We validate ChromA on multiple technologies and biological systems, 



including mouse and human immune cells and find it effective at recovering accessible 

chromatin, establishing ChromA as a top performing general platform for mapping the chromatin 

landscape in different cellular populations from diverse experimental designs. 

We will also discuss new work, not present in the early preprint provided (via link) below 

to extend this model to CRISPR screens, single cell cut&run, DNA methylation and other 

genomic technologies aimed at chromatin state and function.  

An early draft of this work (currently under review) is available at: 

https://www.biorxiv.org/content/10.1101/567669v1 

Software availability  

A Python implementation of ChromA is available for download on GitHub: 

http://github.com/marianogabitto/ChromA . The website will be updated periodically 

with new versions. 
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Background  
DNA methylomes are widely used as epigenomic blueprints in basic life science research, 

but also hold promise as clinically relevant biomarkers [1]. Whole genome bisulfite 

sequencing (WGBS) is a state-of-the-art method for the genome-scale assessment of DNA 

methylation levels, with a growing number of alternative protocols, such as tagmentation 

based (T-) WGBS and PBAT, widely used for bulk, low-input and, more recently, single-cell 

analysis. However, many experimental factors might affect the final methylation calls, and 

therefore basic data processing – read trimming, alignment and site-wise estimation of DNA 

methylation levels – is crucial for downstream analysis, such as identification of differentially 

methylated regions. Despite the high relevance, there is little consensus as to which of the 

numerous software tools and workflows guarantee optimal data processing results, as 

benchmarking studies are limited and scarce. The main reason is the lack of adequate real-

world reference datasets, allowing an unambiguous evaluation of pipeline performance. 

Furthermore, the complexity of pipelines and heterogeneous data influx make it hard to 

implement the benchmarking results as a universal data processing solution for all types of 

applications. PipelineOlympics is a collaborative effort of 15 leading European and American 

labs to comprehensively benchmark bisulfite sequencing software, aiming to provide ultimate 

data processing guidelines for each of the popular wet-lab protocols. 

 
Results  
PipelineOlympics is schematically depicted in Figure 1. To obtain a unique reference 

dataset, we applied several WGBS protocols to four specimens well characterized in a 

previous benchmarking study of targeted DNA methylation assays, that resulted in highly 

accurate DNA methylation measurements at 47 selected genomic regions [2]. Overall, up to 

1 TB of primary sequencing data was generated. In the currently ongoing pilot phase of the 

project, we utilized this gold-standard data set to compare the performance of 10 different 

workflows, developed and routinely used by the participants, on two protocols (standard 

WGBS with Illumina X-ten and, T-WGBS on HiSeq 4000). Tested workflows covered a broad 

selection of read trimming tools (Trimmomatic, cutadapt, skewer), aligners (bwa-meth, bwa-

mem, GSNAP, bowtie, GEM, segemehl, bsmap), post-alignment filtering tools (Picard, 

deduplicator, sambamba), and methylation callers (MethylDackel, methylCtools, BisSNP, 

meth-caller, bscall, BAT, methratio). As a rule, each workflow was executed by its respective 

developers to ensure optimized parameter settings.  
We evaluated the workflows twofold: (i) by relating the obtained calls to the gold standard 

methylation measurements of selected loci, and (ii) through cross-workflow comparison to 



draw genome-wide inference. To assess the workflow accuracy on the gold standard set, we 

developed a set of novel metrics and visualization approaches. Our major performance 

metric was cumulative absolute distance from the gold-standard corridor. Moreover, in order 

to establish the final rank of the pipelines, their errors were weighted by the mappability of 

the regions and samples.  
The majority of pipelines showed high accuracy, with an on-par performance of the top-scorers, 

and several less accurate outliers. As expected, wet-lab protocol and sequencing depth had a 

major impact upon the accuracy, with standard bulk protocol (WGBS) resulting in significantly 

better calls then the low-input protocol (T-WGBS). The correlations between pipelines were above 

0.95 for X-ten WGBS, but reached levels as low as 0.88 in the case of T-WGBS. Nonetheless, 

higher sequencing depth did not always translate into higher accuracy, neither for standard 

WGBS, nor for T-WGBS. Both methods resulted in higher error rates in case of the tumor 

samples. The main reason for this can be the lower stability of the tumor genome; copy 

number alterations and somatic mutations might disrupt the methylation calling. For T-WGBS 

the average absolute distances per pipelines can be as high as 0.1 in tumors and only up to 

0.06 in normal. 

Using the pilot evaluation results as a primer, in the second phase of the project a systematic 

mapping of the combinatorial workflow space is currently being carried out. Briefly, the 

already tested and novel pipelines wrapped using the CWL specification [3] are executed in a 

uniform compute cloud environment that would also allow to asses computational 

performance. In addition, we are working on infrastructural solutions (R package, containers) 

to transform the present study into a persistent and extensible benchmarking resource. 

 

Conclusions 
 
The pilot phase of the PipelineOlympics project allowed us to evaluate bisulfite processing 

workflows based on real biological data along with highly accurate gold standard reference 

measurements. To our knowledge, this is the first WGBS benchmarking study of such kind. It is 

expected to give a significantly better feedback of the workflow performance as compared to 

benchmarks using simulated data, or those with inadequate reference data (e.g. methylation 

arrays). Our ongoing, systematic benchmarking is going to close remaining unaddressed gaps 

and pave the way to optimal processing pipelines for currently used and future WGBS protocols. 

Finally, the design of our study will allow the constant expansion of the set of included pipelines 

and will aid scientists in navigating through the ample data analysis options. 

 

References: 
 
1. Smith Z. and Meissner A., Nat Rev Genet, 2013  
2. BLUEPRINT Consortium, Nat. Biotech., 2016.  
3. Common Workflow Language, v1.0. Specification, CWL working group. https://w3id.org/cwl/v1.0/ 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Partners' workflows   
     1 TB 

distribution 
  

 

   WGBS protocols     
 

Standardized samples 
    DKFZ Aspera   

 

       
 

Locus-specific assays Methylation calls .bedGraph collection   
 

   
 

 

(Bock et al., 2016) 
       

 

        
 

          
 

          
  

Gold-standard Comparison to the Pairwise comparison Exhaustive benchmarking 
measurements gold-standard of workflows and a long-term platform 

 
Figure 1. Scheme of PipelineOlympics activities. 

 
Free vectorized icons downloaded from flaticon.com. 



Characterization of large-scale structural variants using Linked-Reads

Fatih Karaoglanoglu , Camir Ricketts , Ezgi Ebren , Marzieh Eslami Rasekh ,
Iman Hajirasouliha ∗ and Can Alkan ∗

Alterations of DNA content and organization larger than 50 bp, commonly referred to as genomic structural
variations (SVs) [2], are among the major drivers of evolution [6], and diseases of genomic origin [9]. Despite
decades of research they remain difficult to accurately characterize contributing to our lack of full understanding
of the etiology of complex diseases.

Recently a Linked-Read sequencing method called the 10x Genomics system (10xG) was introduced as an
alternative method to generate highly accurate Illumina short reads data with additional long-range information [7].
The ability of extracting long range information from accurate and inexpensive but short read sequencing data
makes Linked-Read sequencing attractive for various applications. It has been used for genome scaffolding [10],
haplotype-aware assembly [7], metagenomics [3], single cell transcriptome profiling [8] and regulatory network
clustering [1], haplotype phasing [7], and genome structural variation discovery [4, 5]. Despite the advances in SV
discovery using various technologies, detecting complex SV such as balanced rearrangements (i.e., inversions and
translocations), and segmental duplications (SDs) remains challenging due to mapping ambiguity. Currently no
Linked-Read based method exists to anchor a new SD (i.e. find their insertion locations).

Here we present novel algorithms to discover deletions, inversions, translocations, and large (> 40 Kbp) direct
and inverted interspersed SDs using Linked-Read sequencing data. We redesign and extend upon VALOR [4] and
use split molecule and read pair signatures (Figure 1) to detect SDs and estimate the insertion sites of the new SD
paralogs, and further include read depth signature to filter potential false positives caused by incorrect mappings.
We implemented our new algorithms as the VALOR2 software package. Briefly, VALOR2 differs from the former
version of VALOR through: 1) it can characterize segmental duplications, translocations, and deletions, 2) it
incorporates read depth information to improve predictions and reduce false calls, and 3) it provides full support
to alignment files (i.e., BAM) generated from 10xG Linked-Read data sets.

Using simulated data sets we show that VALOR2 achieves high precision and recall (94% and 82%, respectively)
for segmental duplications, 98% and 76% for large inversions, and 93% and 71% for translocations. We also applied
VALOR2 to the genomes of NA12878, and a Yoruban trio in addition to a haploid genome (CHM1) sequenced
with the 10xG platform [7]. Of the several tools we tested, VALOR2 had the largest number of validated inversions
in the NA12878 genome while predicting the second lowest number of total inversions (only LUMPY, which only
called 7 inversions, has fewer). This result further highlights the superior precision and recall of VALOR2. Ad-
ditionally VALOR2 was very useful in identifying large scale duplications by exploiting Linked-Read information
in the NA12878 sequencing data. We predicted multiple direct segmental duplications and inverted duplications
with chromosomes 1 and 16 containing both classes of duplications.

Funding This work was supported by a grant by TÜBİTAK (215E172) and an EMBO Installation Grant (IG-
2521) to C.A. This work was also supported by start-up funds (Weill Cornell Medicine) and a National Science
Foundation (NSF) grant under award number IIS-1840275 to I.H. C.R. received support from the Tri-Institutional
Training Program in Computational Biology and Medicine (via NIH training grant 1T32GM083937).
Availability: VALOR2 source code is available at https://github.com/BilkentCompGen/valor, and a Docker
image is available at https://hub.docker.com/r/alkanlab/valor
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Figure 1: Split molecule and read pair sequence signatures used in VALOR2. a) Deletion, b) inversion, c) inter-
spersed duplication in direct orientation, d) inverted duplication, e) translocation. In each case, the large molecules
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Extended abstract  
Decoding the clonal substructures of somatic tissues sheds light on cell growth, development and 
differentiation in health, ageing and disease. DNA-sequencing, either using bulk or using single-cell 
assays, has enabled the reconstruction of clonal trees from frequency and co-occurrence patterns of 
somatic variants. However, approaches to systematically characterize phenotypic and functional 
variations between individual clones are not established. Here we present cardelino (
https://github.com/PMBio/cardelino), a Bayesian method for inferring the clonal tree configuration and 
the identity of individual cells from single-cell RNA-seq (scRNA-seq) data with a Gibbs sampler (see 
full preprint [1]). Briefly, cardelino models the expressed variant alleles in single cells as a clustering 
method, with clusters corresponding to somatic clones with (unknown) mutation states (Fig. 1A). 
Critically, cardelino can integrate a guide clonal tree configuration derived from external data, e.g., 
bulk or single-cell DNA sequencing data, as scRNA-seq data alone is usually very sparse and 
additional data helps. 

 
Initially, we assess the accuracy of cardelino using simulated data that mimics typical real data. By 

default, we used a guide clone configuration with 10% errors compared to the simulation truth. 
Alongside assessing the performance of cardelino, we compare the results with two alternative 
approaches: SCG [2] without using the guide clone configuration and Demuxlet [3] instead assuming 
the guide configuration fully correct. In the default setting, cardelino achieves high overall performance 
(Precision- Recall AUC=0.947; Fig. 1B), remarkably outperforming SCG and Demuxlet. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 | Cardelino model for somatic clone inference with scRNA-seq. (a) Graphical representation of the cardelino 
model. The clonal tree configuration matrix C is an unknown variable and follows a Bernoulli prior distribution encoded by an 
guide tree configuration Ω and an error rate ξ. The clone configuration C and cell identity I together encode the genotype c of 

i,Ij 
each variant i in each cell j. The alternative allelic read count a out of total depths d follows a binomial distribution with 

i,j i,j 
parameter  if c  = 1, otherwise . Shaded nodes represent observed variables; unshaded nodes represent unknown 

i i,Ij 0 

 
variables; yellow circled nodes represent fixed hyper parameters. (b) The precision-recall curves for three methods on a 
simulated data set with 10% error in the guide clone configuration. The simulation setting follows typical real observations: 4 
clones, 10 variants per branch, 25% of variants with read coverage, 200 cells, 20 repeat experiments (c) The area under the 
precision-recall curve when varying the error rate in the guide clone configuration. 

https://github.com/PMBio/cardelino
https://github.com/PMBio/cardelino


 
We further explore the effect of a variety of key dataset characteristics on cell assignment (Fig 1 in 

[1]), especially the error rate in the guide clone configuration. Fig. 1C here shows that Demuxlet 
suffers when there is a high error rate in the guide clone configuration, while cardelino is robust to 

such errors and keeps excellent performance (AUPRC>0.97) even with 25% error rate in the guide 
clone configuration, thanks to its ability to identify and correct these errors. 

After validating our model using simulations, we apply cardelino to matched scRNA-seq and bulk 
exome sequencing data from 32 human dermal fibroblast lines, identifying hundreds of differentially 
expressed genes between cells from different somatic clones (Fig 3 in [1]). These genes are 
frequently enriched for cell cycle and proliferation pathways, indicating a key role for cell division 
genes in non-neutral somatic evolution (Fig 4 in [1]). 

A similar problem to the clone reconstruction is donor deconvolution, i.e., demultiplexing cells from 
pooled scRNA-seq experiments by using common genetic (similar to somatic) variants. Existing 
demultiplexing strategies, e.g., Demuxlet [3], rely on access to complete genotype data from the set of 
pooled samples, which greatly limits the applicability of such methods, in particular when genetic 
variation is not the primary object of study. To address this, we modified cardelino model and 
introduced a variational inference method (named Vireo, see full preprint [4]), efficiently and 
accurately demultiplexing data from pooled experimental designs. Our model can be applied to 
dataset with partial or without any genotype information of the pooled samples. Using simulations and 
results on real data (Fig 2; more in Fig 2-3 in [4]), we demonstrate the robustness of our model and 
illustrate the utility of multi-sample experimental designs for common expression analyses. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 | Performance of Vireo in demultiplexing without genotype reference data. (A) Precision-recall curve for the 
assignment of singlet-cells and doublet detection in a simulation of 8 input samples. The 90% thresholds are highlighted with 
black circles. (B) Concordance of singlet assignment and doublet detection between Vireo without genotype data and Demuxlet 
applied with complete genotype reference on three experimental batches (i.e., wells). Bars denote the number of cells assigned 
to each cell, either considering cells that were consistently assigned by Vireo and Demuxlet (blue), or assigned exclusively by 
Vireo (green) or Demuxlet (red). (C) Alignment of samples between batches 1&2 and batch 3 when , when applying Vireo 
separately. Values in the heatmap denote the fraction of concordant genotype states between pairs of samples from separate 
Vireo runs. 
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Background 

 
Structural variations (SV) are characterized as genomic segments of a least 50 base pairs (bp) long, that are 

rearranged in the genome. There are several types of SV such as deletions, insertions, duplications, inversions, 

translocations. This kind of polymorphism have been shown involved in many biological processes, particularly 

diseases or evolution [1]. Databases referencing such variants grow as new variants are discovered, at this time 

dbVar, the reference database of human genomic SVs [2], contains 35,428,724 variant calls, illustrating that 

many SVs have already been discovered and characterized in the human population. In this context, it becomes 

very interesting and informative to evaluate for a given newly sequenced individual if its genome holds already 

known SVs. This is commonly known as the SV genotyping problem. 
 

Such genotyping methods already exist for short reads data: for instance, SVtyper [3], SV2 [4]. 

Though short reads are often used to discover and genotype SVs, this is well known that their short size 
make them ill-adapted for predicting large SVs or SVs located in repeated regions. Third generation 
sequencing technology, such as Paci c Biosciences (PB) and Oxford Nanopore Technologies (ONT), can 
produce long reads data compared to Next Generation Sequencing technologies. Despite their higher 
error rate, long reads are crucial in the study of SVs. Indeed, the size range of this data can reach a few 
kilobases to megabases, thus long reads can extend over rearranged SV sequences as well as over the 
repeated sequences often present at SV’s breakpoint regions. 
 

Following long reads technology’s development, many SV discovery tools have emerged, such as Sni  es  
[5]. To our knowledge there is currently no tool that can perform genotyping from a set of known SVs with 
long reads data. Thus, there is a need to develop accurate and e cient methods to genotype SVs with long 
reads data, especially in the context of clinical diagnoses. 

 

Results 

 
Method We propose a novel method that aims at assigning a genotype for a set of already known SVs in 
a given individual sample sequenced with long reads data. In other words, the method assesses if each 
SV is present in the given individual, and if so, how many variant alleles it holds, ie. whether the individual 
is heterozygous or homozygous for the particular variant. The method is described and implemented here 
for only one type of SV, the deletions, but the principle can be easily generalized to other types of SVs. 
We also provide an implementation of this method in the tool named Biskoul. 
 

The principle of the method is based on: 1) Generating reference sequences that represent the two 
possible alleles of each SV. The reference allele (allele 0) is therefore the sequence of the deletion with 

adjacent sequences at each side, and the alternative allele (allele 1) consists in the joining of the two 

previous adjacent sequences. 2) Then, sequenced long reads are aligned on all previously generated 

references, using Minimap2 [6], speci cally designed for long erroneous reads. 3) An important step of our 

method consists in selecting informative alignments, in order to remove i) uninformative alignments, that is 
those not discriminating between the two possible alleles, and ii) spurious false positive alignments, that 

are mainly due to repeated sequences. 4) Finally, for each SV, the allele frequency is measured based on 

the number of supporting alignments, in order to estimate genotype. 

 



Evaluation on simulated data Biskoul was assessed on PB simulated long reads for the human chro-
mosome 1, with 1,000 real characterized deletions found in dbVar [2], ranging from 50 to 10,000 bp, 
equally distributed among the three di erent genotypes (0/0, 0/1, 1/1). 
 

Biskoul achieved 95.8 % precision, it correctly assigned genotypes to 942 over 987 predicted deletions. 

Most erroneous genotypes concern deletions of small size (less than 100 bp), as expected these are harder to 

genotype than longest deletions. As a matter of fact, the precision is of 85.4 % for deletions smaller than 100 bp 

versus 97.9 % for deletions greater than 500 bp. The remaining false positive deletions of size 100 bp, were 

manually investigated, and most of them occur in regions with a high density of mobile elements. 

 
Comparison with SV discovery approaches Then we assessed if these simulated deletions could be easily 
detected and genotyped by a long read SV discovery tool. We applied here the best to date such tool, 
Sniffles [5] to the chromosome 1 simulated read dataset. As expected, none of the 333 simulated 
deletions with 0/0 genotypes were assigned a genotype in the Sni es output call set, since a discovery tool 
naturally only reports present variants. Surprisingly, among the 667 deletions simulated with either a 0/1 
or 1/1 genotype, only 406 were discovered by Sni es, which gives a recall of only 60.9 %. Interestingly, 
Sni es also mis-predicts the genotype of the discovered deletions, assigning most of the 1/1 discovered 
deletions (n = 254, 81 %) as heterozygous. This highlights the fact that Sni es, a SV discovery tool, is 
much less precise for the genotyping task than a dedicated genotyping tool. 

 

Application to real human data Biskoul was also applied on real ONT data [7] for the whole human genome of 

NA12878 individual. As the set of deletions to genotype, we used the merged SV call set provided by the 

Genome in a Bottle (GiAB) consortium for NA12878 (Mt. Sinai School of Medicine dataset), where only SVs 

predicted by all methods were kept. This set of known variants contains 1,685 deletions. 
 

Biskoul assigned a genotype to 1,684 deletions, of which 1,514 (90 %) were genotyped exactly as 
in GiAB. Biskoul took 1h46m on this dataset, including 1h42 for the alignment with Minimap2 parallelized 
on 40 cpu and with a maximum RAM memory of 6.5 Gbytes. 

 

Conclusions 

 

In this work, we provide a novel SV genotyping approach for long reads data, that is fast and accurate on 

both simulated and real datasets. This work also demonstrated that this is crucial to develop dedicated SV 

geno-typing methods, since SV discovery methods are not as e cient and precise to genotype variants 

once SVs have been discovered. The approach is implemented for the moment only for deletion variants 

in the Biskoul software. However, this proof of principle on deletion variants is a rst step before 

generalizing the approach for all types of SVs. Insertion variants are simply the counterpart of deletions, 

and inversions and transloca-tions are SVs even more balanced than insertions/deletions regarding the 

number of breakpoints (with exactly two breakpoints per allele). Therefore, for all these types of SVs, the 

method will be easily generalized. Our method lls a gap and now enables SV genotyping using long reads 

for clinical diagnosis or population geno-typing. Biskoul is available at https://data-

access.cesgo.org/index.php/s/6EhOdOBsVNRr72n, under GNU A ero GPL licence. 
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Background  
Graph-based methods have been of growing interest in genomic analysis. Graphs provide a natural way of 

expressing variation or uncertainty in a genome [1, 2]. They can be used for diverse applications such as genome 

assembly, error correction and structural variation genotyping. With the growing usage of graphs, methods for 

handling graphs efficiently are becoming more important. In particular, sequence alignment is one of the most 

fundamental operations in genome analysis and used in most applications, including error correction [3], genome 

assembly [4], and graph-based haplotype phasing [5]. 
 
Results  
In this work we present our tool GraphAligner for aligning long reads to genome graphs. GraphAligner uses a seed-

and-extend approach and combines novel strategies for banded sequence-to-graph alignment with our previous 

algorithmic advances on bit-parallel sequence-to-graph alignment [6]. 
 
The seeding is based on finding exact matches fully contained inside a node, which we found to be highly effective 

for long reads. We interface with the MUMmer4 [7] API for finding exact matches. Our read mapper GraphAligner 

is based on the bit -parallel sequence-to-graph method from our previous work[6]. In order to scale it to large 

genomes, we have designed and implemented a novel banded alignment approach. In contrast to sequence-to-

sequence alignment, where efficient banded alignment schemes are easy to implement [8], the situation is more 

complex for graphs, where the graph topology can render simple banding approaches infeasible. To address this 

challenge, our algorithm dynamically determines which cells of the DP table are to be examined based on the 

alignment scores. 
 
Table 1 shows the runtime and memory use of aligning several datasets and graphs. Bacterial, gene and 

chromosomal scale graphs can easily be handled with a regular laptop, and human whole genome graphs with a 

modest computing server. We compared our alignment approach against the vg toolkit[9]. We built a variation graph 

of the whole human genome by taking the reference GRCh38 and variant calls from the Human Genome Structural 

Variation Consortium [10] and using vg to build a graph with the alternate alleles. We extracted the subgraph 

corresponding to chromosome 22. Then we selected PacBio reads from the individual HG00733 by aligning them to 

the reference with minimap2[11] and taking the reads which aligned to chromosome 22 and randomly downsampled 

them to 10x coverage. We aligned the selected reads to the chr22 graph using both vg and GraphAligner. Finally we 

filtered out alignments with an identity less than 60% as spurious mappings. Table 3 shows the results. We see that 

GraphAligner is almost 50 times faster when indexing the graph and almost 9 times faster during subsequent read 

mapping, while successfully aligning almost three times more sequence. 
 
To show how better alignment can improve downstream analyses, we built a hybrid error correction pipeline for 

long reads. This uses the same method as the long read corrector LoRDEC[3]: short reads are used to build a de 

Bruijn graph (DBG), long reads are aligned to the graph and the aligned path is extracted as the corrected read. We 

ran LoRDEC using the settings suggested in their paper[3]. For our method, we self- corrected the Illumina reads 

using Lighter [12], build the de Bruijn graph from them using Bcalm[13], and aligned the long reads to this graph 

using GraphAligner. To evaluate the error rate, we aligned the corrected reads to the reference using BWA [14] and 

measured the number of mismatches. We compared our pipeline to LoRDEC on E. Coli. We also ran our error 

correction pipeline for fruit fly, the major histocompatibility complex (MHC) region of HG002 and the whole 

genome of HG00733. Table 2 shows the results. Although we use the same idea as LoRDEC, the improved 

alignment method means that we can align more reads faster and more accurately: While LoRDEC uses 4001 CPU-

seconds to achieve an error rate of 0.057%, our pipeline finishes in 415 CPU-seconds and delivers an error rate of 

0.0064% (E.coli). Due to the rapid speed, GraphAligner now enables error correction on whole human genomes. 
 
Conclusion  
As sequence alignment is one of the most fundamental operations in genome analysis, better alignment methods will 

produce many downstream benefits. GraphAligner is a tool for rapidly aligning long reads to genome graphs about 

one order of magnitude faster than existing methods. GraphAligner is open source on Github 

(https://github.com/maickrau/GraphAligner) and available on bioconda [15]. 



Tables   
Graph Graph size (bp) Sequence (bp) Cov Aligned  CPU-time Peak memory 

 

       
 

E. Coli DBG 5,390,452 98,213,822 21x 83,537,974 (85%) 188 sec 1.0 Gb 
 

Fruit fly DBG 174,176,070 29,306,290,844 167x 18,845,672,801 (64%) 173 h 30 Gb 
 

HG00733 DBG 2,978,668,577 305,778,524,405 101x 198,877,101,999 (65%) 1508 h 142 Gb 
 

HG002 MHC 5,778,089 112,313,805 19x 109,270,932 (97%) 353 sec 0.4 Gb 
 

Human 3,097,741,781 305,778,524,405 101x 207,641,933,617 (68%) 663 h 71 Gb 
 

variation graph        
 

Human chr22 50,914,444 5,401,948,911 106x 3,141,016,398 (58%) 4.5 h 3.4 Gb 
 

variation graph  
540,244,732 10x 316,580,602 (59%) 26.2 min 3.3 Gb  

  
 

   
 

 Table 1: Performance of GraphAligner on different graphs and datasets.  
 

       
 

Dataset Correction Sequence (bp)  Error rate CPU-time Peak memory 
 

         

E. Coli None 98,213,822  13.9% - -  
 

 LoRDEC 80,323,902  0.057% 4001 sec 2.0 Gb  
 

 GraphAligner 83,537,974  0.0064% 415 sec 2.0 Gb  
 

Fruit fly None 29,306,290,844  9.9% - -  
 

 GraphAligner 18,845,672,801  1.6% 176 h 30 Gb  
 

HG00733 None 305,778,524,405  11.8% - -  
 

whole genome 
GraphAligner 198,877,101,999 

 
1.6% 1534 h 142 Gb 

 
 

   
 

HG002 MHC None 112,313,805  14.6% - -  
 

 GraphAligner 109,270,932  0.2% 439 sec 1.4 Gb  
  

Table 2: Error correction. The CPU-time and peak memory for GraphAligner measures the whole pipeline, including 

short read self-correction, graph construction, indexing and alignment. 
 
 

  Indexing  Alignment  

Aligner Aligned (bp) CPU-time Peak memory CPU-time Peak memory 
      

vg 1.13.0 map 109,124,508 (20%) 33.2 min 9.3 Gb 229.1 min 4.0 Gb 

GraphAligner 314,511,746 (58%) 0.7 min 2.8 Gb 25.5 min 3.3 Gb  
Table 3: Comparison of GraphAligner and vg version 1.13.0 on the chromosome 22 variation graph. Aligned 

column counts only alignments with an identity at least 60%.   
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A tumor results from an evolutionary process where somatic mutations accumulate in a population of cells. This
process gives rise to a tumor that is a mixture of distinct clones, distinguished by somatic mutations including single-
nucleotide variants (SNVs), copy-number aberrations (CNAs), and other changes. The standard approach to identify
such clones is to cluster SNVs that have similar cancer cell fractions (CCFs), defined as the proportion of tumor cells
harboring the mutation. The key assumption of this approach is that SNVs with similar CCFs have occurred on the
same phylogenetic branch. There are, however, two key deficiencies: (1) the CCF cannot be unambiguously inferred
from DNA sequencing data; (2) the CCF does not account for loss of mutations, which is common in tumors with
CNAs (Fig. 1). Thus, the standard approach might lead to incorrect reconstructions of tumor clonal architectures, which
in turn might lead to incorrect conclusions in downstream analyses.

Here, we define a novel quantity, the descendant cell fraction (DCF) that addresses these deficiencies in a rigorous
manner, providing a summary statistic for both the prevalence and the evolutionary history of an SNV. That is, SNVs
with the same DCF are likely to have occurred on the same branch of the phylogenetic tree describing the evolution of
the tumor. We introduce DeCiFer, an algorithm to simultaneously infer evolutionary histories of individual SNVs and
clusters SNVs by their corresponding DCFs under the principle of parsimony. Underpinning DeCiFer is an elegant
embedding of the high-dimensional space of evolutionary histories of SNVs onto the low-dimensional DCF space. On
simulated data, we show that DeCiFer more accurately clusters SNVs than existing methods and infers evolutionary
histories with high recall. On a metastatic prostate cancer dataset, we show that DeCiFer’s use of the DCF to cluster
SNVs results in more parsimonious evolutionary and migration histories of these metastatic cancers. Thus, DeCiFer
enables more accurate quantification of intra-tumor heterogeneity and improves inference of tumor evolution.

a
Maternal copy Single-nucleotide variant (SNV)Paternal copy

b

Matched Normal

Tumor Sample

CTACGTGA
GCGGACGT

…GAGAAAGCTGCGGACGTGGACGA…
TGCGGACG

TACGTGGA
GCGTACGT

GCGGACGT
CGGACGTG

CGACGTGA
GACGTGGA

GCGGACGTSNV calls

CNA calls

µ̂(2,0) = 0.2µ̂(1,1) = 0.8

VAF :

f̂ = 0.3

Phylogenetic Tree

Short read (100 bp)

Statistic Confounding Factors Cellular 
Prevalence

Evolutionary 
History Identifiable

VAF copy-number gain & loss yes no yes

CCF copy-number loss yes no no

DCF none yes yes no

c

20%40%20%10%10%

SNVs on 
same branch

clone 
proportion

SNVF f = 0.3

CCF c = 0.4

DCF d = 0.4

SNVF f = 0.3

CCF c = 0.4

DCF d = 0.4

SNVF f = 0.3

CCF c = 0.4

DCF d = 0.4

State 
Tree T

SNVF f = 0.3

CCF c = 0.4

DCF d = 0.4

State 
Proportions s

s(1,1,0,0) = 0.6

s(1,1,1,0) = 0.2

s(2,0,2,0) = 0.2

SNVF f = 0.5

CCF c = 0.8

DCF d = 0.8

s(1,1,0,0) = 0.2

s(1,1,1,0) = 0.4

s(2,1,2,0) = 0.4

T s

SNVF f ⇡ 0.3

CCF c = 0.5

DCF d = 0.8

T s

Human reference genome

Fig. 1: a, Calling of SNVs and CNAs in bulk DNA samples yield variant allele frequencies f̂ (VAFs) for SNVs and
copy-number proportions µ(x,y) for CNAs. b,c, The prevalence and evolutionary history of an SNV is described by
unobserved state proportions s and a state tree T , respectively. State proportions are summarized by different statistics.
The VAF, or the fraction of chromosomal copies that harbor the SNV, is confounded by copy-number gain and loss
(green and orange). The cancer cell fraction (CCF), or the proportion of cells that harbor an SNV, is confounded by
copy-number loss (orange and blue). The descendant cell fraction (DCF) is the proportion of extant cells that descend
from the cell that introduced the SNV. The DCF summarizes both a state tree T and state proportions s, and is not
confounded by mutation loss: the orange and blue SNV have identical DCF d = 0.8, reflecting their common ancestry.
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Background

Whole Genome Bisulfite Sequencing (WGBS) is considered the gold standard for genome wide, high resolution
DNA methylation measurements. With the ongoing advances in Next Generation Sequencing techniques, for
example single-cell methylomes, an evergrowing amount of WGBS sequencing data is produced for di↵erent
organisms, tissues, and cell types. However, while sequencing throughput has increased, alignment and methy-
lation calling algorithms have not been adapted to the increasing demands, which causes a serious bottleneck
in current applications. Furthermore, widely used tools do not resolve the mapping ambiguity introduced by
WGBS, which comes at the cost of accuracy of the called methylation rates.

Results

Here, we present a novel approach called FAME (Fast and Accurate MEthylation calling), which combines
bisulfite read alignment and methylation calling into one task. We designed a specialized index structure based
on sequence k-mers that can store mammalian sized genomes e�ciently, while allowing fast lookups of candidate
matching positions for bisulfite converted reads. To allow for constant time traversal of the index structure,
gapped k-mers are hashed using a fast rolling hash function called ntHash [1], specifically tailored for genomic
sequences. We further designed fast filters to prune redundant or repetitive information in the index, which
drastically reduces the search space for read alignment.

Using this index, we can find candidate matching regions for a read by looking up all gapped k-mers of a
queried read e�ciently using rolling hash functions. Smart filtering of the candidate regions based on q-grams
allows us to reduce time spent on false positive candidates. To carry out exact indel-based alignment, we
extended the Shift-And based pattern matching automata to allow for asymmetric C/T mapping to resolve
ambiguity introduced by bisulfite conversion. Once a unique best alignment is found, methylation levels are
directly estimated in the data structure, thus avoiding excessive I/O for writing large Bam files as well as
additional postprocessing time for methylation calling.

We compared FAME against the state of the art with synthetic and real data sets. The synthetic data
consisted of 25 million reads sampled from the human chromosome 22 mimicking the WGBS protocol, such
that ground truth methylation rates were known. The real data included 437 million PE WGBS reads and
EPIC beadchip microarray data for LNCaP cells taken from [2], where the EPIC array measurements were
taken as ground truth. Di↵erence to ground truth values was computed using root mean square error (RMSE)
ovre all existing CpGs. The quality of the methylation rates of FAME are on par with the most accurate
competitor, while FAME provides an order of magnitude faster processing time as can be seen in Fig. 1.

Conclusion

We suggested a new method, FAME, for calling methylation rates of WGBS data that is based on a novel index
structure specifically tailored for methylation data, and a bitvector matching that resolves the WGBS mapping
ambiguity. We proved on both synthetic and real data that the quality of methylation rates called by FAME

1



Figure 1: Method comparison. Analysis of the runtime and accuracy of state of the art bisulfite aligners. Results
for synthetic (25 million PE reads, left) and real data (437 million PE reads, right) comparing runtime (x-axis)
against accuracy of the predicted methylation rates as RMSE (y-axis). The size of each point indicates the
number of unmapped CpGs.

are on par with the most accurate state of the art aligner, but FAME processes data an order of magnitude
faster. Furthermore, due to the novel index structure, FAME does not require extensive I/O or realignment
and thus naturally suits the task of aligning extensive WGBS single cell data. Hence, FAME paves the way for
methylation calling of large-scale datasets and is ideal for cloud computing. FAME is open source and free to
use and can be downloaded from https://github.com/FischerJo/FAME.
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Motivation:  
RNA-Sequencing has enabled the high-throughput assessment of a cell’s transcriptome. 

However, in many situations this technique is used as a stand-in, specifically to measure the 

pool of mRNA as a proxy for the cell’s proteome. In addition to quantitative features, such as 

gene expression, it is mainly qualitative features such as splicing forms, resulting in distinct 

protein isoforms, that are of interest. The problem of predicting the set of expressed transcript 

forms from shotgun sequencing data is inherently hard to solve and has been widely addressed 

in the past [1,2]. For some applications, however, it is not necessary to generate full protein 

isoforms and one is only interested in the local variability of the whole proteome. Especially in 

the context of personalized cancer therapy, assessing the proteome’s variability and predicting 

immunogenicity of peptide fragments sampled from the proteome are a central concern. 

 
Method:  
We present the software tool ImmunoPepper, that generates the set of all plausible peptides 

from a splicing graph, derived from a given RNA-Seq sample. This splicing graph contains both 

annotated as well as novel splicing variation. The set of peptides is generated through 

combinatorial traversal of all exon pairs, using all reading frames implied through the 

propagation of all annotated translation start sites of the gene along all paths in the graph. In 

addition, the generated peptide set can be personalized with germline and somatic variants and 

takes un-annotated introns into account. The comprehensive set of peptides can then be used 

for further downstream analyses such as domain annotation or computational immunology. To 

facilitate analysis with standardized tools for MHC binding prediction, we provide output for 

unique k-mer sets of all generated peptides, where typical k-mer lengths reach from 8 to 22. For 

each peptide additional quantitative metadata is provided that can be used for filtering and 

increasing the specificity of the predicted neoepitopes. This metadata includes RNA-Seq 

expression support, but also the support for any of the given genome variants. 

 
Results:  
The core algorithm of our software has already been successfully applied to a large cancer 
patient cohort [3], predicting the set of splicing derived neoepitopes predominantly observed in 
cancer samples. The ImmunoPepper software built around this core is a much more generalized 
implementation that includes a substantial amount of new features, such as a more complete 
traversal of complex graphs, the inclusion of single exon genes and the generation of peptides 
across multiple splice junctions. These new contributions lead to an increase of sensitivity of 
more than 50%. At the same time, a better tracking of metadata allows for fine-grained filtering 
and an increase of specificity for the prediction of sample-specific peptides.  
We demonstrate the versatility of ImmunoPepper with applications to a set of 63 cancer samples 
from the The Cancer Genome Atlas cohort contrasted with samples from the Genotype Tissue 
Expression project; and the analysis of 5 mouse tumor samples in comparison to more than 300 
background samples taken from mouse ENCODE and a reference study [4]. In both cases, we 
can demonstrate the existence of sample-specific (tumor-specific) splicing-derived peptides that 
can give rise to (tumor-specific) neoepitopes. 
 

 

https://paperpile.com/c/JMIIwN/zLrg+a0js
https://paperpile.com/c/JMIIwN/X63R
https://paperpile.com/c/JMIIwN/wybu


Availability: 
 
The software ImmunoPepper is implemented in Python3 and is available open source on the 
GitHub platform. 
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Background 
 
Polyploid genomes have more than two homologous sets of chromosomes. Polyploidy is common to many 

plant species, including important food crops like potato, wheat and maize. Resolving these genomes at the 

haplotype level is crucial for understanding the evolutionary history of polyploid species [7] and for designing 

advanced breeding strategies [5]. While phasing diploid genomes using long reads has become a routine step, 

polyploid phasing still presents considerable challenges [2]. Higher ploidy increases the complexity of the 

underlying computational problem: In the diploid case, assembling one haplotype over all heterozygous 

variants directly determines the complementary second haplotype. For genomes of higher ploidy, this is not 

possible, especially since in certain regions, two or more haplotypes can be identical. The Minimum Error 

Correction (MEC) model [3], which is the most common and successful formalization for diploid haplotype 

phasing, does not address such locally identical haplotypes. Approaches for polyploid phasing based on MEC 

hence struggle in such regions and, beyond that, face the challenge that dynamic programming techniques for 

solving diploid MEC [4] become infeasible in practice. 

 

Results 
 
Method. Here, we present WHATSHAP POLYPHASE, a novel two-stage approach that overcomes these 

challenges and produces accurate haplotypes for polyploid genomes using data from single-molecule se-

quencing technologies. See Fig. 1 for an overview.  
In the first phase, we use cluster editing [8] to find clusters of reads that are likely to originate from 

the same haplotype. Therefore we compute a position-dependent similarity score for each pair of reads 

and construct a graph using the reads as nodes and the scores as edge weights. The size of the graph 

makes it infeasible to solve cluster editing to optimality, so we propose a fast iterative heuristic that 

produces accurate clusters. In this first phase, we intentionally do not make assumptions on the ploidy. If 

multiple haplotypes are locally identical, their reads from this region might form a single cluster.  
In the second phase, we perform the actual haplotype assembly by threading a bundle of haplotypes 

through the clusters obtained in the first phase (see Fig. 1). More formally, threading one haplotype through 

the set of clusters consists in picking one cluster for each variant position. In contrast to the MEC model, this 

approach allows us to take the coverage into account: Our model allows to thread multiple haplotypes through 

a single cluster of reads from multiple haplotypes due to local similarity. To determine a threading for all 

haplotypes, the model takes the following factors into account: (i) The read coverage of the cluster should be 

explained by the number of haplotypes that are threaded through this cluster, and deviations from this are 

penalized; (ii) On each position the consensus of the visited clusters has to match the input genotype, if 

possible; (iii) Switching between clusters is penalized, to encourage haplotypes to stay in the same cluster as 

long as possible. We propose a novel dynamic programming approach able to rapidly find  
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Figure 1: WHATSHAP POLYPHASE. The input allele matrix results from a given BAM and VCF file and an optional 

realignment step. Phase I: Statistical scoring of each read pair results in a weighted graph. Cluster editing produces 

read clusters. Phase II threads k haplotypes through the clusters (here k = 4) balancing coverage violations and 

switch costs while respecting the genotype information. This results in blocks of k phased haplotypes. 



rately reconstruct haplotypes of polyploid organisms while properly handling genomic regions of similar 

or identical haplotypes. 

 

Experimental Results. For evaluation, we generated a tetraploid version of human chromosome 22 by 

combining sequencing data of two individuals (NA19240 and HG00514), for which ground truth 

haplotype information is available [1]. We simulated reads at different coverages and additionally 

produced equivalent datasets by merging real sequencing reads of these two individuals.  
We compare WHATSHAP POLYPHASE to H-POPG [6], a state-of-the-art tool for polyploid phasing, and 

evaluate the performances of both tools based on the switch error rate (SE), block-wise Hamming rate 

(HR) and N50 of the phased blocks, see Table 1. WHATSHAP POLYPHASE achieves lower switch error rates 

than H-POPG for both real and simulated reads, as well as lower block-wise Hamming rates. The latter is 

still quite high in both cases, which is caused by switch errors in the middle of large blocks. Generally, 

WHATSHAP POLYPHASE avoids uncertain phase connections and opts to split blocks instead. This results in 

smaller but better quality blocks compared to H-POPG.  
 

  SE (%)  HR (%)  N50 (bp) 

coverage WH-PP   H-POPG WH-PP   H-POPG WH-PP   H-POPG 

20 1.45 2.08 16.63 26.06 45 907 927 570 

40 0.88 1.27 20.03 23.98 247 502 1 029 048 
      

   (a) real read data   
       
       

  SE (%)  HR (%)  N50 (bp) 

coverage WH-PP   H-POPG WH-PP   H-POPG WH-PP   H-POPG 

20 1.74 2.56 13.45 26.93 24 558 852 018 

40 0.72 1.17 20.01 23.77 330 736 927 570 

80 0.49 0.81 20.57 23.62 720 984 1 216 882 

120 0.46 0.71 21.14 22.06 798 580 1 134 439 
         

(b) simulated read data 
 
Table 1: Results on real (a) and simulated (b) datasets. Performances are based on the switch error rate (SE), block-

wise Hamming rate (HR) and N50 for the block size. Total length of the chromosome is 50.8Mb 
 

 

Conclusions 
 
We present a new two-stage approach for polyploid phasing. The first phase clusters reads based on their 

similarity using a position-dependent statistical scoring scheme. The second phase threads haplotypes 

through the clusters and takes coverage and genotype information into account. Our model departs from the 

popular MEC paradigm, which has been successful for phasing diploid genomes, and results in the first 

algorithm designed to specifically handle locally identical haplotypes. Current challenges lie in eliminating 

switch errors causing high Hamming rates and in scaling the algorithm to ploidies above six.  
Our method WHATSHAP POLYPHASE delivers haplotype reconstructions with 30% lower error rates 

compared to the state-of-the-art tool H-POPG on an artificial tetraploid benchmark genome. Our 

algorithm is implemented as part of the widely used open source tool WHATSHAP and is hence ready to 

be included in production settings. We are presently exploring the ability of WHATSHAP POLYPHASE to 

phase polyploid plant genomes and to create maps of identical haplotype regions. 
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